Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 617(7959): 111-117, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100901

RESUMO

Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, [Formula: see text]50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3-5, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters [Formula: see text]50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both [Formula: see text]50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.


Assuntos
Carbono , Florestas , Árvores , Clima Tropical , Biomassa , Carbono/metabolismo , Secas , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Xilema/metabolismo , Chuva , Mudança Climática , Sequestro de Carbono , Estresse Fisiológico , Desidratação
2.
Am J Bot ; 110(4): e16146, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36826405

RESUMO

PREMISE: Understanding tree species' responses to drought is critical for predicting the future of tropical forests, especially in regions where the climate is changing rapidly. METHODS: We compared anatomical and functional traits of the dominant tree species of two tropical forests in southern Amazonia, one on deep, well-drained soils (cerradão [CD]) and one in a riparian environment (gallery forest [GF]), to examine potential anatomical indicators of resistance or vulnerability to drought. RESULTS: Leaves of CD species generally had a thicker cuticle, upper epidermis, and mesophyll than those of GF species, traits that are indicative of adaptation to water deficit. In the GF, the theoretical hydraulic conductivity of the stems was significantly higher, indicating lower investment in drought resistance. The anatomical functional traits of CD species indicate a greater potential for surviving water restriction compared to the GF. Even so, it is possible that CD species could also be affected by extreme climate changes due to the more water-limited environment. CONCLUSIONS: In addition to the marked anatomical and functional differences between these phytophysiognomies, tree diversity within each is associated with a large range of hydraulic morphofunctional niches. Our results suggest the strong potential for floristic and functional compositional shifts under continued climate change, especially in the GF.


Assuntos
Árvores , Água , Árvores/fisiologia , Água/fisiologia , Clima Tropical , Florestas , Secas , Folhas de Planta/fisiologia
3.
Nat Commun ; 9(1): 1125, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29588444

RESUMO

The discovery of large geometrical earthworks in interfluvial settings of southern Amazonia has challenged the idea that Pre-Columbian populations were concentrated along the major floodplains. However, a spatial gap in the archaeological record of the Amazon has limited the assessment of the territorial extent of earth-builders. Here, we report the discovery of Pre-Columbian ditched enclosures in the Tapajós headwaters. The results show that an 1800 km stretch of southern Amazonia was occupied by earth-building cultures living in fortified villages ~Cal AD 1250-1500. We model earthwork distribution in this broad region using recorded sites, with environmental and terrain variables as predictors, estimating that earthworks will be found over ~400,000 km2 of southern Amazonia. We conclude that the interfluves and minor tributaries of southern Amazonia sustained high population densities, calling for a re-evaluation of the role of this region for Pre-Columbian cultural developments and environmental impact.

4.
Sci Rep ; 8(1): 1003, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343741

RESUMO

Species distribution models (SDMs) are widely used in ecology and conservation. Presence-only SDMs such as MaxEnt frequently use natural history collections (NHCs) as occurrence data, given their huge numbers and accessibility. NHCs are often spatially biased which may generate inaccuracies in SDMs. Here, we test how the distribution of NHCs and MaxEnt predictions relates to a spatial abundance model, based on a large plot dataset for Amazonian tree species, using inverse distance weighting (IDW). We also propose a new pipeline to deal with inconsistencies in NHCs and to limit the area of occupancy of the species. We found a significant but weak positive relationship between the distribution of NHCs and IDW for 66% of the species. The relationship between SDMs and IDW was also significant but weakly positive for 95% of the species, and sensitivity for both analyses was high. Furthermore, the pipeline removed half of the NHCs records. Presence-only SDM applications should consider this limitation, especially for large biodiversity assessments projects, when they are automatically generated without subsequent checking. Our pipeline provides a conservative estimate of a species' area of occupancy, within an area slightly larger than its extent of occurrence, compatible to e.g. IUCN red list assessments.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Modelos Estatísticos , Dispersão Vegetal/fisiologia , Árvores/fisiologia , Brasil , Chrysobalanaceae/fisiologia , Fabaceae/fisiologia , Humanos , Polygonaceae/fisiologia
5.
Sci Adv ; 1(10): e1500936, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26702442

RESUMO

Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict that most of the world's >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century.

6.
Science ; 342(6156): 1243092, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24136971

RESUMO

The vast extent of the Amazon Basin has historically restricted the study of its tree communities to the local and regional scales. Here, we provide empirical data on the commonness, rarity, and richness of lowland tree species across the entire Amazon Basin and Guiana Shield (Amazonia), collected in 1170 tree plots in all major forest types. Extrapolations suggest that Amazonia harbors roughly 16,000 tree species, of which just 227 (1.4%) account for half of all trees. Most of these are habitat specialists and only dominant in one or two regions of the basin. We discuss some implications of the finding that a small group of species--less diverse than the North American tree flora--accounts for half of the world's most diverse tree community.


Assuntos
Biodiversidade , Rios , Árvores/classificação , Árvores/fisiologia , Modelos Biológicos , População , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...